import sbt._ object MyBuild extends Build { lazy val root = Project("root", file(".")) .dependsOn(wikilinksProject) lazy val wikilinksProject = uri("../myproj/") //RootProject(uri("git://github.com/alvinj/SoundFilePlayer.git")) }
August 22, 2018
SBT Relative Local Project Dependency
Create project/Build.scala
July 7, 2018
What is Apache Kafka? What is the use?
It's been a while I have heard a lot about Apache Kafka. I have read a lot of material and still have no idea what it is good for. Here I write down the gist of some of my findings and hope it helps someone along the way:
June 6, 2018
Tensorflow Serving Inception Model Using Docker
The docs regarding tensorflow serving are pretty convoluted and hard to follow. Here are the easy steps to take to serve Inception model in Docker:
Install docker (e.g. on ubuntu):
Once completed we can test it out by running the model server
Output should look like this if install was successful
Download and run inception model:
By now you should get the result of running the inception model on the panda image printed on your console. If oyu get timeout, just increase timeout from 10 to 30 seconds in the
Some sources:
https://github.com/llSourcell/How-to-Deploy-a-Tensorflow-Model-in-Production/blob/master/demo.ipynb
https://www.youtube.com/watch?v=T_afaArR0E8
https://www.youtube.com/watch?v=CSbfk9jXItc
https://www.tensorflow.org/serving/docker
https://www.tensorflow.org/serving/serving_inception
Install docker (e.g. on ubuntu):
sudo apt-get update
sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"
Download Dockerfile, build its container image, access its shell, download Tensorflow repos and build them (building can take about an hour).
wget https://raw.githubusercontent.com/tensorflow/serving/master/tensorflow_serving/tools/docker/Dockerfile.devel
docker build --pull -t $USER/tensorflow-serving-devel -f Dockerfile.devel .
docker run -it $USER/tensorflow-serving-devel
cd ~ # go to home
git clone --recurse-submodules https://github.com/tensorflow/serving
cd serving && git clone --recursive https://github.com/tensorflow/tensorflow.git
cd tensorflow && ./configure
cd ..
bazel test tensorflow_serving/...
Once completed we can test it out by running the model server
bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server
Output should look like this if install was successful
Usage: model_server [--port=8500] [--enable_batching] [--model_name=my_name] --model_base_path=/path/to/export
Download and run inception model:
curl -O http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz
tar xzf inception-v3-2016-03-01.tar.gz
./serving/bazel-bin/tensorflow_serving/example/inception_saved_model --checkpoint_dir=inception-v3 --output_dir=/tmp/inception-export
ls /tmp/inception-export
ls inception-v3
./serving/bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9002 --model_name=inception --model_base_path=/tmp/inception-export &> inception_log &
wget https://upload.wikimedia.org/wikipedia/en/a/ac/Xiang_Xiang_panda.jpg
./serving/bazel-bin/tensorflow_serving/example/inception_client --server=localhost:9002 --image=./Xiang_Xiang_panda.jpg
By now you should get the result of running the inception model on the panda image printed on your console. If oyu get timeout, just increase timeout from 10 to 30 seconds in the
inception_client.py.
Some sources:
https://github.com/llSourcell/How-to-Deploy-a-Tensorflow-Model-in-Production/blob/master/demo.ipynb
https://www.youtube.com/watch?v=T_afaArR0E8
https://www.youtube.com/watch?v=CSbfk9jXItc
https://www.tensorflow.org/serving/docker
https://www.tensorflow.org/serving/serving_inception
Subscribe to:
Posts (Atom)